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1 Abstract

We explore the use of deep learning techniques to automate entity recognition and linking in
biomedical journals. We explore a Bi-LSTM and CRF model for entity recognition, and a separate
LSTM based, modular neural model for entity linking. We compare the results of these models
against the results of TaggerOne, a semi-Markov model that learns both of these tasks jointly.

2 Introduction

Named entity recognition (NER) is the problem of recognizing groups of words as entities. NER
for biomedical papers is very important for tasks such as such as the correct identification of men-
tion and span of diseases and genes in a particular text. Given the huge volume of biomedical
research papers, we need accurate as well as efficient models for such tasks. Long-Short-Term
Memory (LSTM) based models in combination with Conditional Random Fields (CRF) achieve
high performance on a variety of NER tasks when provided with an appropriate training corpus
and a relatively small investment in feature engineering.

Many end-user tasks also require entity linking, the identification of the concept mentioned within
a controlled vocabulary or ontology. For this task, we have partially explored a tf-idf approach in
conjunction with a neural linking model.

We have divided the task into two phases, the first is to perform NER followed by entity link-
ing. In the second phase we use the joint learning model, TaggerOne for join NER and linking.

3 Related Work

3.1 Joint learning -NER and linking

In Taggerone[3], the authors propose a joint learning method to solve the problem of both entity
recognition and linking. They introduce a semi-Markov based approach for NER and a cosine
similarity function between tf-idf features for linking. The joint learning task is seen as finding the
best NER segmentation which maximizes the sum of individual NER score and linking score.

They define a scoring function over the set of valid segmentations Y(X), so that the task of
prediction becomes finding the segmentation Y ∈ Y(X) with the highest score:

f(X) = argmax
Y ∈Y

(Score(Y ; s, t,W ))
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Score(Y ; s, t,W ) =

|Y |∑
j=0

Score(Yj ; s, t,W )

Score(Yj ; s, t,W ) = ScoreNER(Yj ; s) + ScoreNorm(Yj ; t,W )

They model the NER scoring function as a structured classification problem using a multi-class
linear classifier, which learns one weight vector sl per label li ∈ L. tl is an additional term for the
cosine similarity. Element (i, j) in matrix Wl can be interpreted as the correlation between token
ti appearing in a text segment with NER label l and token tj appearing in any concept name for
l from the lexicon. The model can thus learn a variety of relationships between tokens in text and
names from the lexicon, including both synonymy and contrast.

3.2 Bi-directional LSTM with CRF

In Huang et al [1] the authors have shown the use of Bi-directional LSTM with CRF for a benchmark
NLP tasks like sequence tagging and Named Entity Recognition. Becuase they use a bi-directional
LTM, the model can effectively take into account the left and right context of each word. The
tag transition information gets utilized because of the CRF layer. It has produced state of the art
result in NER and part of speech tagging tasks.

3.3 Entity Linking

In Gupta et al [2]. the authors explore a neural, modular entity linking system that learns a unified
dense representation for each entity using multiple sources of information. The model uses a CNN
over a Wikipedia description of the entity, an LSTM over the context of a mention, and entity
type information to build mention and entity embeddings – thus capturing different aspects of the
“meaning” of an entity. Hence, they overcome the shortcomings of several existing models that do
not capture all these aspects.

4 Experiments

4.1 Entity Recognition

Entity recognition is the problem of grouping the words of a sentence into entities. We are for-
mulating the individual task of entity recognition as a sequence tagging problem. The input is a
sequence of tokens, and the output is a sequence of entity types corresponding to each token. We
are using IOB encoding for each of the entity types. B means the beginning of an entity, I means
inside of an entity, and O means outside of an entity (i.e. not part of an entity). For example,
“Due to pulmonary disease, ...” would be labeled as “O, O, B-Disease, I-Disease, ...”.

For this task, we are using a bidirectional Long Short-Term Memory Network (LSTM) with an
added conditional random field layer, similar to Huang et al[1]. The LSTM takes a sequence of
word embeddings as its input.

We use a bidirectional LSTM which is able to use the left and right context for each word to
produce its output. The output of the LSTM is passed through a hidden layer with a nonlinearity.
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The output from the hidden layer is passed through a linear transformation to produce scores for
each tag. The CRF models the transitions between tags, and uses the scores to produce the best
sequence of tags.

We train all the parameters of the model jointly, using the log likelihood of the training dataset.
We are using the Adam optimizer to optimize the log likelihood.

Once we have entity types for each token, we can decode the IOB encoding into entities.

4.1.1 Sentence Tokenization

We tokenized the dataset for NER in two ways. One, where we used the entire abstract and title
and then use a word tokenizer (the GENIA tagger) over it. The other was tokenize the abstract into
sentences and then tokenize those sentence into words. In this way, we can feed either a sentence
into our model, or an entire abstract. We found that using the entire abstract worked better than
using single sentences.

4.1.2 Character-level Embeddings

We also experimented with using character embeddings. We use an additional bidirectional LSTM
model that takes a sequence of characters from a word as input, and outputs a single vector that
represents the character-level representation of that word. Using this additional LSTM, we augment
each word embedding with character-level information. This is helpful for taking advantage of the
similar spelling of some words. We found that using character-level embeddings of words improved
the performance of the model.

4.2 Entity Linking

For the entity linking task we are using the method as mentioned in Gupta et. al. The difference
is that we are not using outside knowledge to create a description embedding. We have created
encodings of a particular mention, locally, using an LSTM from the beginning of the sentence to
the mention and from the mention to the end of the sentence, to capture the right and the left
context of the mention. We also use a bag of mentions to capture the context of the mention at the
abstract level. These are combined to get the full mention context. To generate the predictions, we
plan to use a set of generated candidate entities and their prior scores. We predict the likelihood of
a mention being each entity candidate by taking the dot product of the mention and entity vector
representations and normalizing over all entity candidates.

4.2.1 Candidate reduction

We have trained a tf-idf vectorizer on all of the gold mentions present in all the types using character
and word level features. Assuming that a perfect recognition step would give us the document type
of the recognized mention, we tried to find the top 1, 5 and 100 closest matched pairwise cosine
distance in the tf-idf transforms of the mention and that of the mentions in a particular document
type. This helps us in reducing the number of candidates.
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Figure 1: Candidate Set Reduction

4.3 TaggerOne

One of the challenges of having the two tasks of entity recognition and linking in a serial pipeline
is that it cascades the errors from NER to linking. Also, the NER module is unable to directly
exploit the lexical information captured by Linking. For combining the two tasks, we are using a
joint learning model called TaggerOne[3].

Using Ab3P to identify the replace abbreviations took a significant amount of time to run. We
thus use a static abbreviations file preprocessed for our dataset. The text is then broken into sen-
tences. For NER, it uses a semi-Markov structured linear classifier, with a rich feature approach.
Where a traditional Markov model tags each token to one of the lexicons, the model trains a semi
markov structure to identify segments which may have multiple tokens. At the token level, the
features used are token text, token stem, part of speech, character level n—grams, etc. It also uses
feature templates at the segment level which includes the number of tokens in the segment, the
characters and tokens surrounding the segment, the first and last token, whether the segment con-
tains unbalanced parenthesis, etc. The NER feature vector for each segment is equal to the segment
level feature values summed with each of the token level features for each token within the segment.

For linking, a supervised semantic indexing approach is used which converts both the segments
and the names into vectors and then uses a weight matrix to score pairs of vectors. The normalized
vector for each entity is a modification of the tf-idf vector considering the entities as documents and
the entity’s lexicon as the collection of documents. A cosine similarity is used to match the entity
segments with the normalized entity representations. NER and linking is performed simultaneously
by defining the score for each segment to be the sum of its NER and normalization scores. The
combined objective function in effect learns the best segmentation which produces the best linking
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and thus minimizing the overall loss.
For our TaggerOne experiments, we were able to get results for NER, as well as linking results
given both the gold NER entities and TaggerOne’s own predicted NER entities. The results are
discussed below.

4.4 Data

We have titles and abstracts from 4300 biomedical papers with manually labeled entities with 19
UMLS entity types. The dataset is divided into 60% training set, 20% validation set, and 20% test
set.

4.5 Word Embedding

We have used pre-trained word embeddings that have been trained on a text corpus of biomedical
scientific literature that contains over five billion words. It was run using the skip-gram model with
a window size of 5, hierarchical softmax training, and a frequent word sub-sampling threshold of
0.001 to create 200-dimensional vectors.
As the biomedical papers contain chemical names like “DCTN(4)” or “pirimiphos-methyl”, we need
a tokenizer that does not separate these words at ‘(’ or ‘-’. Thus, we use Genia tokenizer that is
specifically tuned for biomedical texts.

5 Results

Performance of the NER system is evaluated on the 20 percent of dataset available as test set.
Since we have two sub-problems to solve, we can evaluate them separately. Specifically, we focus
on the following questions:
1. How effective is the Bi-LSTM model in NER predictions?
2. How well does the entity linking model do with gold NER labels?
3. How well does the entity linking model do with predicted NER labels?

We measure NER model at the mention level, where we require the predicted span and entity
type to exactly match the annotated span and entity type. For linking, we plan to measure at both
the mention level and the abstract level. In the abstract level, we will compare the set of concepts
predicted for the document to the set annotated, independent of their location within the text. We
are using precision, recall and F1 score as evaluation metrics.

5.1 Results from TaggerOne

We trained and evaluated the TaggerOne model on our dataset. We report results for NER only
with exact match in Table 1. We also have results from TaggerOne for entity linking. Table 2 has
linking results using only gold entities and Table 3 has linking results using predicted entities.

Table 1: NER TaggerOne: micro average scores

F1 Precision Recall

56.36 59.42 53.66
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Table 2: Linking TaggerOne (Gold): micro average scores

F1 Precision Recall

74.9 77.4 72.5

Table 3: Linking TaggerOne (Prediced): micro average scores

F1 Precision Recall

44.16 46.5 42

5.2 Results for NER: Bi-LSTM

Our best LSTM + CRF model for NER takes in an entire abstract, instead of just a sentence. It
also uses the character embedding model. Table 4 gives our best model’s results for NER. We also
report a confusion matrix across all the labels in Figure 1. The x-axis is the predicted labels and
the y-axis is true labels. The results suggest our model does well in identifying correct labels. It
also shows that the model is most likely to misclassify entities with the “Outside” label, as opposed
cross-entity type missclassification.

Table 4: NER Bi-LSTM: micro average scores

F1 Precision Recall

sentence level, no character embeddings 58.36 58.39 58.33

abstract level, no character embeddings 58.32 60.33 56.43

sentence level, character embeddings 59.34 59.08 59.60

abstract level, character embeddings 59.35 60.49 58.25

Figure 2: Confusion Matrix for NER
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5.3 Comparison with TaggerOne

We have evaluated TaggerOne and the bi-LSTM model usng the same metrics. On the UMLS
dataset using 19 entity types, the bi-LSTM model performs better than the TaggerOne by 3 points
for the task of NER. Additionally, the bi-LSTM model takes about a day to train, while TaggerOne
takes about a week to train. The bi-LSTM model is more efficient in regards to time, as well as
more accurate.

Figure 3: Type specific F1 scores

Figure 4: Correct mention detection(NER)

5.4 Linking experiment

We tried training the neural linking model over the training set using small dimensions (100 dimen-
sions for word embeddings and LSTM state size) and all the possible 17,000 entities as candidates
for each mention. This achieved around 30% accuracy on the development set. The model used
a lot of memory, and we were not achieving good results, so we decided to focus on candidate set
reduction instead of getting precise results for linking. We believe that with proper candidate set
reduction, we will be able to achieve numbers comparable to TaggerOne. This is because we will
be able to train a model with larger dimensions more efficiently.
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6 Conclusion and Future Work

Using a neural NER model, we were able to achieve better NER results on our biomedical dataset
than TaggerOne. We were also able to train the neural model much more efficiently than Tag-
gerOne. We believe that this shows promise for this model as part of a named entity recognition
and linking pipeline. However, we were not able to properly test our neural entity linking model,
due to time constraints.

In the future, we would like to train the neural linking model using a reduced set of entities from
our candidate set reduction step, as opposed to using all the entities in the dataset. As previously
discussed, we believe that this will allow the model to achieve competitive results. Additionally,
the original neural linking model uses Wikipedia descriptions of entities to augment the training
process. We would also like to implement this. Since entity linking can be such a difficult task, we
believe using outside knowledge of enties could greatly reduce the ambiguity of the linking task.

With a proper entity linking model, we will be able to test the full named entity recognition
and linking pipeline. The results from this pipeline would be very informative when comparing
against TaggerOne, and we would fully be able to explore the magnitude of the cascading errors
problem.
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