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Abstract

Irony is a common phenomenon in social media, and is
inherently difficult to analyse, not just automatically but of-
ten for humans too. The aim of this project was to exper-
iment with the different combinations of features, blending
it with different machine learning models. The dataset and
major source of encouragement behind this project comes
from the sentiment analysis task present in SemEval 2018.
The best performance model was Logistic Regression that
achieved an accuracy in the range of 65-67% and fl-score
in the range of 63-65% with different combination of lin-
guistic features.

1. Introduction

The traditional definition of irony is saying the opposite
of what you mean et al. [7](Quintilien and Butler, 1953).
The development of the social web has stimulated usage of
such figurative languages - irony and sarcasm. In partic-
ular, irony is a very interesting phenomenon as it exposes
the problems that current machines have in detecting the
intended rather than the literal meaning of a sentence. As
such, modeling irony has a large potential for applications
in various research areas, including text mining, author pro-
filing, detecting online harassment, and perhaps one of the
most popular applications at present, sentiment analysis et
al. [4](Maynard and Greenwood, 2014; Reyes, Rosso, and
Veale, 2013) and opinion mining et al. [6](Pang and Lee
2008). Affective computing (AC) is an Al field dealing with
Human-Computer Interaction. It studies intelligent systems
that are able to recognise, process and generate human emo-
tions et al. [8](Picard, 1997). One of the applications that
AC finds in NLP is detecting irony and sarcasms in its con-
versation with human.

In this project, I aim to experiment with the different
combinations of features in the automatic detection of irony,
blending it with different machine learning models. Also, a
major source of encouragement behind this project comes
from the sentiment analysis task present in SemEval 2018

et al. [5]. The problem can be defined as a binary classifi-
cation task where the system has to predict whether a tweet
is ironic or not. The following sentences present examples
of an ironic and non-ironic tweet, respectively:

I just love when you test my patience!! #not

Had no sleep and have got school now #not happy

2. Related Work

In this section, I briefly discuss the approach followed by
3 recent works on Irony/Sarcasm detection:

2.1. Modelling Irony in Twitter: Feature Analysis
and Evaluation - Francesco Barbieri, Horacio
Saggion

In this paper et al. [9], the author uses some dependant
features on Decision tree model over independant features
on Naive Bayes to classify ironic sentences, aiming to
detect inner characteristic of Irony. The paper states that
the model uses seven groups of features to represent each
tweet. Some of which are designed to detect imbalance
and unexpectedness, others to detect common patterns in
the structure of the ironic tweets. These features are as
following:

. Frequency (gap between rare and common words)

. Written-Spoken (written-spoken style uses)

. Intensity (intensity of adverbs and adjectives)

. Structure (length, punctuation, emoticons)

. Sentiments (gap between positive and negative terms)
. Synonyms (common vs. rare synonyms use)

. Ambiguity (measure of possible ambiguities)
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2.2. Clues for Detecting Irony in User-Generated

Contents: Oh...!! It?s ?so easy' ;-) - Carvalho,
P., Sarmento, S., Silva, M. J., and de Oliveira,
E. 2009

The paper et al. [10] explores linguistic clues associated
with the expression of irony in Portuguese in sentences



containing positive predicates. In video/spoken discourse,
especially in a conversational context, one detects a variety
of external clues (e.g. facial expression, intonation, pause
duration) that enable the perception of irony. The author
then discusses that in written text, a set of more or less
explicit linguistic strategies can be used to express irony. It
describes the use of following patterns in detecting of irony
particularly in positive Portuguese sentences:

. Diminutive Forms

. Demonstrative determiners
. Interjections

. Verb Morphology

. Cross-constructions

. Heavy Punctuation

. Quotation Marks

. Laughter Expressions
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Although, many of the patterns are specific to Por-
tuguese language, patterns like Laughter Expressions,
Punctuation and Quotation marks are general to almost
every language.

2.3. Identifying Sarcasm in Twitter: A Closer
Look - Gonzalez-Ib a nez, Roberto, Muresan,
Smaranda, and Wa- cholder, Nina.(2011)

Sarcasm transforms the polarity of an apparently pos-
itive or negative utterance into its opposite. The paper et
al. [11] studies the use of lexical and pragmatic factors to
distinguish sarcasm from positive and negative sentiments
expressed in Twitter messages. Following are the two
factors reported in the paper:

1. Lexical Factors: For this, they used two kinds of
lexical features - unigrams and dictionary based.

2. Pragmatic Factors: They used three pragmatic features -
positive emoticons, negative emoticons, and ToUser (which
marks if a tweets is a reply to another tweet)

2.4. Glove: Global Vectors for Word Represen-
tation - Manning, C.D., Pennington, J., &
Socher, R. (2014)

GloVe is an unsupervised learning algorithm for obtain-
ing vector representations for words. Training is performed
on aggregated global word-word co-occurrence statistics
from a corpus. The result of the paper is a new global log-
bilinear regression model that combines the advantages of
the two major model families in the literature: global matrix
factorization and local context window methods. The per-
formance of model is 75% and it produces a vector space
with meaningful substructure. It also outperforms related
models on similarity tasks and named entity recognition. I
have used the model’s pre-trained word vectors for my ex-

periments in this report.

2.5. Dimensional Sentiment Analysis Using a Re-
gional CNN-LSTM Model - Jin Wang, Liang-
Chih Yu, K. Robert Lai, Xue-Jie Zhang (2016)

LSTMS have been used in the past to perform senti-
ment analysis of texts. In paper et al. [12] the authors
have proposed a regional CNN-LSTM model consisting
of two parts: regional CNN and LSTM to predict the
VA(valencearousal) ratings of texts. Unlike a conventional
CNN which considers a whole text as input, the proposed
regional CNN uses an individual sentence as a region, di-
viding an input text into several regions such that the useful
affective information in each region can be extracted and
weighted according to their contribution to the VA predic-
tion. Such regional information is sequentially integrated
across regions using LSTM for VA prediction.

2.6. Automatic Sarcasm Detection: A Survey

This article is a compilation of past work in automatic
sarcasm detection. In this work et al. [2] a compilation has
been made of the previous work done in sarcasm detection.
They have observed three milestones in the research so far:
semi-supervised pattern extraction to identify implicit sen-
timent, use of hashtag-based supervision, and incorporation
of context beyond target text

3. Dataset

Twitter provides functionality to users to summarize
their intention via hashtags. To facilitate data collection and
annotation, many supervised-learning approaches rely on
hashtag-labeled (e.g. #sarcasm) Twitter data. The dataset
used for the experiments reported in this paper has been
prepared by SemEval2018 competition. They collected
the tweets for automatic irony detection using the hash-
tags #irony, #sarcasm and #not between 01/12/2014 and
04/01/2015 and represent 2,676 unique users. To minimize
the noise introduced by groundless irony-related hashtags,
they manually annotated the corpus following a fine-grained
annotation scheme (Van Hee et al., 2016¢). Prior to data
annotation, the entire corpus was cleaned by them by re-
moving retweets, duplicates and non-English tweets, and
replacement of XML-escaped characters (e.g., &). As a
part of data annotation, they have provided a script that
converts complex emoticons to their description enclosed
within colon (e.g., jU+1F60A to :smiling face with smil-
ing eyes: ) or vice versa. The script uses Python emoji
module to make these conversions.

Approximately, 3834 instances of English tweets dataset
is provided by the SemEval 2018 team. Out of 3834, 1911
instances are from class irony and 1923 from not irony
class. The hashtags are removed from the tweets for the
experiments.



4. Technical Approach

The data analysis, experiments with different features
and models are described below:-

4.1. Data Analysis

Social media data contains many elements such as hash-
tags, profile references, urls. While analysing the dataset,
I found that it contains twitter handle urls that provide no
information to the tweet being irony. Therefore, I removed
these urls as first task of data preprocessing.

I then analysed the length of tweets. I believe the effect
of irony in a sentence is stronger when they are neither
too short nor too long. For example, while analysing the
dataset I found following sentences tagged as irony:

“Love this weather”
”Loving life”
”Wow I feel great”

Reading the above sentences alone (without any back-
ground), humans will never classify these sentences as
irony. Similarly, longer sentences tagged ironic consists
mostly the description of emoticons. For example,

”I love math, I’'m so amped for my final like 7 hours
from now. I hardly studied for it. #BeenDoinglnte-
gralsSinceThe5thGrade  :smiling_face_with_open_mouth_
and_smiling_eyes::face_with_stuck_out_tongue_and_winking
_eye::face_with_tears_of_joy::persevering_face::face_with_
open_mouth_and_cold_sweat::tired_face::confounded_face:”

The average length of ironic tweet in the dataset was 15.
Figure 1 shows the distribution of length of tweets across
the dataset.
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Figure 1. Count of sentences vs length of sentence

4.2. Features

Extracting important features from the given task is a
very important step in machine learning. I identified and
experimented with different features for different models.
For baseline model Naive Bayes, I experimented with bag
of words with unigram and bigram as features. Since,
with Naive Bayes it is difficult to experiment with differ-
ent kinds of features, therefore, I implemented Logistic
Regression Classifier. With Logistic Regression, I experi-
mented with various features like - length of tweets, parts-
of-speech (POS) tagging, repeated characters (like multi-
ple exclamation), usage of emoticons. Additionally, I ex-
perimented with Word2Vec feature in the Neural Network
model LSTM.

4.3. Models

As mentioned in the above section 4.2, I experimented
with three different models with different combination
of feature sets to classify a tweet as irony. These models are:

1. Naive Bayes
2. Logistic Regression
3. LSTM

5. Experiments - Linguistic Features & Models
5.1. Naive Bayes

In this section, I will discuss the train/val/test splits, fea-
tures, hyper-parameter tuning, and performance measure of
Naive Bayes(NB) classifier. I have used Multinomial NB
classifier.

5.1.1 Features

The NB classifier was trained with unigram and bigram fea-
tures.

5.1.2 Tokenization and Normalization

I used BOW with unigram and bigram as feature for the
baseline analysis. Sometimes, the dataset contains punctu-
ations and delimiters that does not make sense. But I think
for irony detection, punctuations could make sense. For
example, ’, could have a sense of polarity in ironic sen-
tences. So, I experimented with removing the punctuations
and delimiters to analyse the model’s performance. I also
experimented with term-frequency times inverse document-
frequency (tf-idf) feature.

5.1.3 Train/Val/Test splits

I divided the datasets as 80% development data and 20%
test data. The development data was further divided into



5-fold cross-validation. The classifier was re-trained with
both the training data and validation data once the hyper-
parameter tuning from validation set was done.

5.1.4 Performance Analysis

The Table 1 below represents the performance met-
rics(accuracy, precision, recall, and fl-score) of Naive
Bayes for different experiments with different feature sets.
First row represents experimentation with only bow on un-
igram and bigram as baseline. The second row is the per-
formance metrics after removing punctuations/delimiters on
baseline features. We see that there is not much difference
in the performance of model on removing the punctuations
from tweets. The third row shows analysis after including
tf-idf on baseline. Adding this, decreases all the 4 metric
values. This is because the tweets in the datasets are very
small (avg of 90 characters long including descriptions of
emoticons). This short texts are likely to have noisy tf-idf
values and hence, decreasing the performance of the model.

Figure-2 below represents the confusion matrix for base-
line - Naive Bayes with bow on unigram and bigram.

Case Accuracy Precision Recall F1-Score

NB 60.6 57.8 67.1 62.1
NB - punc 60.6 57.8 67.7 62.3
NB + tf-idf 58.8 56.6 61.4 58.9

Table 1. Performance Analysis for Naive Bayes
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Figure 2. Confusion Matrix for Baseline

5.2. Logistic Regression

The accuracies achieved with Naive Bayes was approx-
imately 60%. With Naive Bayes, it becomes difficult to
experiment with different hand-crafted features. Hence, 1
chose Logistic Regression classifier and in this section I
will discuss the different hand-crafted features that I used to

train the model. With Logistic Regression, I achieved a bet-
ter accuracy and f1-score compared to the baseline model -
Naive Bayes.

5.2.1 Features

Along with bow on unigram and bigram, I experimented
with four different features - word2vec, usage of emoti-
cons, POS tags, count of exclamation marks and length of
the tweet.

For word2vec feature, I used GloVe - Global Vectors for
Word Representations. GloVe is an unsupervised learning
algorithm for obtaining vector representations for words.
The results representation showcase interesting linear sub-
structures of the word vector space. I experimented with
pre-trained GloVe word vectors.

Since using irony in the language usually signifies the
opposite of what it intends to mean, people use emoticons
like wink ;) in their tweets/sentence. Also ironic sentences
are typically used for humorous or emphatic effects, people
tend to use laughing emoticons such as :D or other complex
emoticons. There are two kinds of emoticons in the twit-
ter dataset - simple emoticons like [:-), :D, ;-)] and complex
emoticons with its descriptions enclosed within a colon like
:face_with_tears_of_joy:. This is explained in section 3 of
the report. I wrote a script to extract both simple and com-
plex emoticons from the tweets. The validation of this script
was done by manually investigating the correctness of the
extracted emoticons after saving it in a file.

Additionally, I experimented with POS tags feature from
nltk and some hand-crafted features like presence of re-
peated characters like count of multiple exclamation marks.

5.2.2 Tokenization and Normalization

First, I used nltk to perform normal word tokenization. I
didn?t remove any stop words, or punctuations/delimiter
since every token carries some meaning. Consequently, text
normalization step just performed lower-casing of tokens,
lemmatization and no word filtering. This method of to-
kenization and normalization resulted in splitting at every
punctuation. For example, tokenization result on a sample
sentence -

”Oh how I missed middle school drama : ) :D” is:

[’Oh’, ’how’, ’T’, *missed’, *middle’, ’school’, ’drama’, ’:’,
20y, Y, D]

On analysing the above ironic sentence with such simple
tokenization, I realized that it splits on hashtags as well as
emoticons. Thus, not being a good tokenizer for tweets.
TweetTokenizer from nltk is a twitter-aware tokenizer that
is specially designed to not tokenize on hashtags and emoti-
cons. The output of TweetTokenizer on the above example
looks like following:



[wOh’, uhow’, u’l’, u'missed’, u’middle’, u’school’,
u’drama’, u’:-)’, u:D’]

5.2.3 Train/Val/Test splits

I divided the datasets as 80% development data and 20%
test data. The development data was further divided into
5-fold cross-validation. The classifier was re-trained with
both the training data and validation data once the hyper-
parameter tuning from validation set was done.

5.2.4 Performance Analysis

The Table 2 below represents the performance met-
rics(accuracy, precision, recall, and fl-score) of Logistic
Regression for different experiments with different feature
sets. First row represents experimentation with only bow on
unigram and bigram as baseline. The second row is the per-
formance metrics after Lemmatization on baseline features.
Performance significantly increases after adding lemmati-
zation.

The third row tests with the feature length of tweets and
we find no change in performance. Figure - 3 shows the dis-
tribution of length across the label O - Not irony and figure -
4 shows the distribution of length across the label 1 - Irony.
On analyzing this graph, I find there is not much difference
in the distribution across the different labels (except very
few longer texts for label 0). Hence, length of text is not
that of a good feature in detecting irony for this dataset.
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Figure 3. Distribution of length of sentence across label 0 - Not
Irony

Fourth row of Table-2 presents performance with POS
tagger. I have used nltk POS tagger for this. And the fifth
row presents performance of different feature sets - lemma-
tization, length of text, POS tagger and one custom feature
count of exclamation marks.
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Figure 4. Distribution of length of sentence across label 1 - Irony

The sixth row, f5 - feature 5 includes usage of emoticons
as feature along with length of text, POS tagger and one
custom feature count of exclamation marks. The perfor-
mance is similar t o that of other models. The seventh row,
f6 - includes usage of emoticons combined with word2vec
along with length of text, POS tagger and one custom fea-
ture count of exclamation marks. The performance metrics
for all the different sets of feature is almost similar.

Figure-5 shows confusion matrix for Logistic Regression
with bow (unigram and bigram), lemma, length of text, POS
tags, and count of exclamation as feature set.

Table 2. Performance Analysis for Logistic Regression

Case Accuracy Precision Recall F1-Score

LR 62.0 60.8 59.8 60.3
LR +f1 66.3 65.6 63.3 64.5
LR +12 65.3 64.3 62.8 63.5
LR +f3 65.6 65.0 61.7 63.3
LR +f4 65.7 65.0 61.6 63.3
LR + 15 65.1 64.0 63.3 63.6
LR + 6 65.7 64.4 64.1 64.3

5.3. LSTM

The Logistic Regression classifier performed much bet-
ter than Naive Bayes. The LR model requires a lot of fea-
ture engineering and thus one needs to have a lot of domain
knowledge in linguistics. For example, I have experimented
with some of the structural features of a ironic sentence but
one could add other sentimental features (like polarity) of
ironic sentence to the model. This requires some knowledge
on how ironic sentences are framed. Since, deep neural net-
work extracts and learns these features, one does not require
a strong domain knowledge in linguistics. So, I decided to
experiment with one of the Neural Network model for this
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Figure 5. Confusion Matrix for LR

task - LSTM.

Long short-term Memory (LSTM) is a special type of
Recurrent Neural Network (RNN) that is capable of learn-
ing long-term dependencies. RNN have loops which allow
the network to use information from previous passes, acting
as a memory. LSTM solves the problem of RNN not being
able to learn to connect the information of long sentences.
Thus, the ability of LSTMs to remember information for a
long period of time finds application in NLP tasks as each
word in a sentence depends greatly on what came before
and comes after it.

I experimented with the LSTM architecture for detecting
irony in a sentence using TensorFlow. To decide the number
of LSTM unit cells, I looked at the average number of words
in a sentence in the given twitter dataset - which was 15.
Thus, I kept the maximum length of input as 25 and number
of Istm unit cells to 12. If the sentence contains fewer words
than 25, it would be assigned a vector of zeros.

5.3.1 Features

Just like Logistic Regression requires quantifiable features
as intput to the model, LSTM inputs need to be scalar values
or matrices of scalar values. If input to the LSTM is given
in the form of raw sentence, it would be difficult to perform
operations such as dot product, backpropagation on string.
Thus, each word in the sentence is converted into a vector
known as word embedding.

For this word2vec feature, I used GloVe - Global Vectors
for Word Representations. As described in section 5.2.1,
GloVe is an unsupervised learning algorithm for obtaining
vector representations for words. The results representation
showcase interesting linear substructures of the word vector
space. I experimented with pre-trained GloVe word vectors.

5.3.2 Train/Val/Test splits

I divided the datasets as 80% development data and 20%
test data. The development data was further divided into
5-fold cross-validation. The classifier was re-trained with
both the training data and validation data once the hyper-
parameter tuning from validation set was done.

5.3.3 Performance Analysis

The accuracy of LSTM model on the test data was 60.3%.
The performance of this model was not up to the mark. One
of the reason LSTM did not perform well as expected could
be improper fine-tuning of the model due to time constraint.

6. Conclusion

The human performance for detecting irony in a sentence
is 62%. With Naive Bayes experiment and simple features
like unigrams and bigrams, I was able to achieve an ac-
curacy similar to that of human performance. With more
advanced linguistic features and Logistic Regression classi-
fier, I have achieved accuracy in the range of 65-67% and
f1-score in the range of 63-65% with different combination
of features. I believe implementing more such features spe-
cific to the problem like the presence of polarity in the sen-
tence, the model will have better performance results.

I would also like to mention here that when analysing
some tweets labelled as irony I found that the dataset con-
tained many ambiguous statements. Some of such ambigu-
ous tweets are listed below:

I love you mom

We want turkey!!

Beautiful day

No human being would detect these tweets to be ironic.

7. Future Works

My initial observations is that there are many interesting
phenomena to be observed to detect irony, and that struc-
tural features of a sentence, while useful, is not sufficient
for accurate irony detection of such tweets. There are dif-
ferent types of irony. One such is polarity contrast, where
sentences containing an evaluative expression whose polar-
ity (positive, negative) is inverted between the literal and the
intended evaluation. For example:

“I really love this year’s summer; weeks and weeks of awful
weather.”

The first part of sentence contributes to the positive senti-
ment ("love”) whereas the second part is inverted to nega-
tive sentiment by usage of word “awful”. We can leverage
this polarity inversion as a feature to detect irony in a sen-
tence as a future task.

Due to the time constraint, I could only experiment with
presence of emoticon in a sentence as a feature. Some



emoticons like a wink smile ;), or a laughter expression :D
are more likely to be present in an ironic sentence. An ex-
tension of this experiment could be to include classification
of emoticons as a feature than just a mere presence of emoti-
cons.

Another area of future work would be to fine-tune and
train LSTM model to give a better performance for this
task. Other small enhancements could be made like using
of GloVe pre-trained on twitter data than the normal corpus.
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